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ABSTRACT 
The advent of the Third computing platform, integrating Social, Mobility, Analytics, and Cloud (SMAC), has 

ushered in an era of unprecedented data generation across diverse domains like healthcare, finance, 

transportation, and cybersecurity. This surge in data, termed Big Data, poses challenges due to its unstructured 

and imbalanced nature, prompting the need for advanced analytical approaches. Deep Learning, rooted in 

artificial neural networks, has emerged as a powerful tool for handling the complexities of Big Data. Its ability 

to learn hierarchical representations of features enables it to extract intricate patterns, making it well-suited 

for various real-world challenges. In healthcare, for instance, Deep Learning algorithms like Neural Networks 

with Dropout and Random Forest have shown promise in classifying Medicare beneficiaries based on different 

scenarios. In one scenario, focusing on cancer-affected beneficiaries, the Deep Learning Neural Network with 

Dropout achieved impressive sensitivity, specificity, and accuracy scores of 99.17%, 97.68%, and 98.8%, 

respectively. This underscores its ability to discern complex patterns crucial for patient care. Techniques like 

Grid Search facilitate the identification of the most effective classifier configuration, enhancing predictive 

accuracy and robustness. Overall, the application of Deep Learning alongside traditional techniques offers 

significant promise for extracting valuable insights from Big Data across various domains.  
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1. INTRODUCTION 

The evolution of computing, transitioning from mainframe to client-server architecture, and now to 

the SMAC era—encompassing Social, Mobility, Analytics & Cloud technologies—represents a 

significant paradigm shift. This convergence heralds the advent of the third computing paradigm, 

marked by the proliferation of diverse data sources and the emergence of Big Data. The introduction 

of SMAC technologies has sparked the generation of vast volumes of data from various origins, 

including social media platforms, mobile apps, real-time streams, smart devices, RFID chips, and the 

Internet of Everything (IoE). Notably, healthcare streams have made substantial contributions to this 

surge in data. Advancements in Information Security Management System (ISMS) standards have 

instilled confidence among both Cloud Service Providers (CSPs) and users, addressing security 

challenges associated with cloud deployment. Consequently, this has driven widespread adoption of 

cloud-based applications, fueled further by enhancements in web services recommendations. The 

convergence of SMAC technologies has facilitated seamless connectivity, exemplified by the Internet 

of Everything (IoE), enabling effortless connections between individuals and entities. However, the 

prevailing trend in this era is the exponential growth of Big Data. This data, characterized by its 

voluminous, fast-moving, and diverse nature, surpasses the capacities of traditional legacy systems 

for analysis. Thus, a paradigm shift has occurred, with a dual focus on data and computational 

resources. Augmented analytics, leveraging advanced techniques such as machine learning and 

artificial intelligence, plays a crucial role in deriving insights from Big Data. 

The expansion in data size coincides with a proliferation of features, highlighting the growing 

significance of deep learning. Unlike conventional neural networks (NN), deep learning distinguishes 

itself through its utilization of hidden neurons and layers. This unique capability enables deep 

learning to expose unstructured data to layers, resulting in an output that represents the input data 

with reduced dimensionality and enhanced abstract feature extraction. Early exploration of biological 

neurons dates back to the late fifties, with the introduction of the perceptron by [20] for binary 

classification. Neurons stimulate one another, forming intricate neural networks crucial for encoding, 

processing, and transmitting information. The perceptron mirrors biochemical processes by 

transferring learning from input to output layers through activation functions. Further enhancements 

by [21] introduced epochs and multiple hidden layers to address complex problems, utilizing Delta 

rule Learning implemented via backpropagation [22] to fine-tune neuron weights for improved 

performance. The evolution of deep learning culminates in the creation of Deep Neural Networks 

(DNNs), enabled by multiple hidden layers, facilitating the development of deep architectures. 

However, training DNNs is pivotal to prevent gradient vanishing during backpropagation, which, 

although mitigated by advanced variants, may result in slower learning. DNNs offer a distinct 

approach to training data for supervised and unsupervised learning techniques. In unsupervised 

learning, data labeling is unnecessary, while supervised learning leverages weights to predict target 

values by minimizing training errors. Learning in DNNs is characterized by hierarchical 

representation, attracting researchers across diverse domains to devise cutting-edge solutions such as 

speech recognition, image processing, collaborative filtering, and voice-enabled services. Concepts 

like machine learning, overfitting, error minimization, and weight learning have been extensively 

explored by [33–35]. In essence, the journey of deep learning from its inception to its current state 

underscores its transformative potential in extracting meaningful insights from complex datasets. The 

utilization of hidden layers and advanced training techniques in DNNs represents a significant leap 

forward in addressing real-world challenges across various domains. 

Due to technological limitations, the complete capabilities of Deep Neural Networks (DNNs) have 

not been thoroughly explored. However, with the convergence of Social, Mobility, Analytics & Cloud 

(SMAC) technologies, DNNs are increasingly applied in various real-world scenarios. One notable 

application is the pursuit of universal health coverage, identified as a global challenge within the 
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United Nations' Sustainable Development Goals, particularly under Goal 3 focusing on Good Health 

and Well-Being. The primary hurdles to achieving universal health coverage by 2030 revolve around 

addressing financial risks. The United States has been actively engaged in this endeavor by offering 

health coverage through programs like Medicare, diligently monitoring beneficiaries to detect and 

mitigate any potential financial risks they may face. Leveraging Medicare claims data, particularly 

from patients with chronic conditions, this study aims to categorize beneficiaries based on gender 

and cancer diagnoses. For the classification task, Deep Neural Networks (DNNs) were employed, 

incorporating various regularization techniques such as dropout to address overfitting concerns. The 

classifiers utilized include Random Forest (RF), along with Deep Learning Neural Networks with 

dropout (DLNNWD) and without dropout (DLNNWOD). Before classification, optimal parameters 

were determined through the grid search strategy. 

2. MATERIALS and METHODS 

2.1 Data Set 

The dataset, obtained from [37], consists of Medicare claims that outline beneficiary profiles, 

including personal details like name, age, gender, and chronic conditions. Initially, there were several 

missing values in the dataset, which were dealt with using null value imputation. The chosen 

approach utilized maximum likelihood, which involved removing null values and then analyzing the 

distribution across columns. Through measures of central tendency, missing values were filled by 

sampling points from the distribution. Following this, significant features were identified, as 

explained in section 2.2. 

2.2 Selection of Input Features Vectors 

Figure 1 displays the 15 features derived from the profile. The other variables relate to providing 

enrolment details for the Medicare program, as well as averages of cost and utilization obtained from 

the claimed dataset. These averages are assessed and showcased separately, distinguishing between 

enrolment periods of equal to or less than 12 months. 
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Figure 1: Shows the data sets' feature descriptions. 

2.3 Proposed Methodologies 

The experiments were conducted separately, employing three different deep learning algorithms to 

classify Medicare beneficiaries under two distinct scenarios. The first scenario pertains to 

beneficiaries affected by cancer, while the second scenario focuses on gender-based classification, 

specifically targeting female beneficiaries. The methodology proposed is depicted in Figure 2. 

 

Figure 2: Proposed Methodology's Flow Diagram 
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2.4 Classification Protocol 

In the context of classifying Medicare beneficiaries, Random Forest and Deep Learning Neural 

Network with Dropout were identified as the top-performing classifiers. Random Forest 

demonstrated superior performance in categorizing beneficiaries affected by cancer, whereas Deep 

Learning Neural Network with Dropout excelled in gender-based classification. 

2.5 Deep Learning Algorithms 

As stated in the section on suggested approaches, two scenarios were classified using three deep 

learning algorithms.  

2.5.1 Random Forest: The learner's decision tree constituted the foundation for this ensemble 

learning technique. The bootstrapped instance was chosen and trained with the basic learner in the 

first stage. In the following phase, arbitrary examples were  

picked for assessment at each node. Once every instance has been trained with the basic learner, the 

algorithm comes to an end. The result is the combination of all the outcomes from each individual 

base learner. During the experiment, three hyperparameters were used: max depth, which indicates 

the depth to which a tree is allowed to grow, sample rate, which determines the number of samples 

to be produced at every split, and ntrees, which indicates the number of trees. These three 

hyperparameters together control the complexity of each tree.  

2.5.2 Deep Learning Neural Networks: Within Deep Learning Neural Networks (DLNN), the 

presence of multiple hidden layers allows for the generation of more intricate features from basic 

ones, as highlighted in [38]. Nonetheless, DLNNs are susceptible to overfitting, a phenomenon where 

the model excessively learns from a specific training dataset, potentially incorporating irrelevant 

noise and leading to inaccurate predictions on unseen data. To counteract overfitting, it is essential 

to monitor both the loss and accuracy metrics on both the training and validation datasets. Common 

strategies to address this issue include simplifying the network architecture, implementing batch 

normalization, applying regularization techniques such as dropout or weight decay (L2 

regularization), and employing data augmentation. 

In this particular study, regularization through dropout was employed to mitigate overfitting. Dropout 

randomly deactivates certain activations during training, thereby reducing the model's reliance on 

specific weights within the network [39]. Another regularization technique, weight decay, penalizes 

the model's weights to encourage smaller values, ultimately aiding in mitigating overfitting [40,41]. 

This regularization term, known as weight decay, is introduced into the loss function E (θ) to combat 

overfitting, as depicted by the equation: 

𝐸𝑅(𝜃) = 𝐸(𝜃) + 𝜆Ω(𝑤)                                                                                          (1)  

In this case, the regularization function Ω (w) is, the weight vector is w, and the regularization factor 

(coefficient) is λ.  

Ω(w) =
1

2
𝑤𝑇𝑤                                                                                                            (2)  

The fact that the biases are not regularized must be noted [42]. 

The capacity of DLNN to construct higher-level features from lower-level features is one of its 

advantages [38]. Deep learning neural networks with and without dropout (DLNNWD and 

DLNNWOD) 

• The metric input_dropout_ratios: quantifies the number of features accessible for each training 

sample. 
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• Hidden: Controls the dimensions and quantity of the hidden layer. 

• Regularization parameters: These parameters address the overfitting concern, as discussed 

earlier. Ridge regression (L2) and L1 (Least Absolute Shrinkage Selection Operator) are utilized to 

normalize absolute weights and the sum of squared weights, respectively. Equations 3 and 4 depict 

L1 and L2 regularization applied to least-squares, respectively. 

𝑤∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ {(𝑡(𝑥𝑗) −𝑗 ∑ 𝑤𝑖ℎ𝑖(𝑥𝑗)}2
𝑖 + 𝜆 ∑ |𝑤𝑖|𝑘

𝑖=1                                  (3)  

𝑤∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ {(𝑡(𝑥𝑗) −𝑗 ∑ 𝑤𝑖ℎ𝑖(𝑥𝑗)}2
𝑖 + 𝜆 ∑ 𝑤𝑖2

𝑘
𝑖=1                                  (4)  

• The parameter referred to as hidden_dropout_ratios determines the proportion of inputs 

accessible for training each hidden layer. 

• Activation functions, also known as transfer functions—Softmax, Rectifier, Maxout, and Tanh—

are commonly used as activation functions for input and output hidden layers, respectively. To avoid 

slow convergence, the dataset undergoes training for ten epochs. The Grid Search technique, 

employing a random search approach, was utilized to determine the optimal values for 

hyperparameters. This approach ensures completion of the grid search within ten epochs. Figure 3 

outlines the hyperparameters along with their corresponding values utilized in the present study. 

 

Figure 3: The adjusted hyper-parameter values 

2.6 Performance Evaluation Metrics: 

The classifiers' relative performances were assessed using a threshold-based evaluation. True 

Positives (TP) represent correctly identified cases of females or cancer patients, while False 

Negatives (FN) occur when patients are mistakenly labeled as having cancer or being female. True 

Negatives (TN) are accurately categorized as non-cancerous or involving male patients, whereas 

False Positives (FP) refer to cases wrongly labeled as non-cancerous or involving male patients. This 

evaluation framework provides a comprehensive understanding of each classifier's effectiveness in 

accurately classifying beneficiaries based on gender and cancer status. 

Sensitivity is the accurate prediction of cases of cancer patients or female patients provided by  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
× 100                                                                          (5) 

Specificity: This is provided by and provides the ratio of accurately predicted Not Cancer/Male cases.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
× 100                                                                          (6) 

Accuracy: The proportion of cases where the cancer/female and not-cancer/male predictions were 

made properly.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
× 100                                                          (7) 

The area under the receiver operating characteristics (ROC) is represented by the AUC [43, 44]. If 

the value hits 1, the classifier's prediction is most accurate.  

MCC: Mathew's correlation coefficient is a commonly used performance evaluation metric that can 

be expressed mathematically as  

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)      
                                                          (8)  

The geometric mean of sensitivity and specificity, or G-Means for short, is a mathematical 

representation of the balanced interpretation of accuracy.  

𝐺 − 𝑀𝑒𝑎𝑛𝑠 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                                                        (9)  

The H2O package (45) is used to conduct the tests. In H2O, the optimizer chooses the threshold so 

that the F1 measure would be used to determine which models are the best. 

3. RESULT and DISCUSSION 

The experiment conducted involved the utilization of three distinct deep learning algorithms—Deep 

Learning Neural Network with Dropout (DLNNWD), Deep Learning Neural Network without 

Dropout, and Random Forest (RF)—on the Medicare beneficiary dataset. The performance of these 

algorithms was meticulously evaluated across various metrics, as outlined in Table 1. To gauge the 

effectiveness of the generated models, a 10-fold cross-validation approach was employed as a 

hyperparameter. 

Dropout, an essential technique used to mitigate overfitting in neural networks, was integrated into 

the Deep Learning Neural Network with Dropout model. Results indicated that Random Forest (RF) 

outperformed other algorithms in classifying beneficiaries as cancer patients, whereas DLNNWD 

excelled in classifying beneficiaries based on gender. The implementation of deep learning 

algorithms for Medicare beneficiary classification yielded notable performance enhancements across 

all three algorithms. 

Through rigorous experimentation with these algorithms utilizing 10-fold cross-validation, the most 

promising results were achieved in the first scenario, focusing on classifying beneficiaries based on 

cancer status. DLNNWD demonstrated exceptional performance, achieving a sensitivity of 99.17%, 

specificity of 97.68%, and accuracy of 98.8%. In contrast, the second scenario, which centered on 

gender-based classification (specifically, identifying female beneficiaries), saw RF emerge as the top 

performer. It achieved a sensitivity of 82.97%, specificity of 68.71%, and accuracy of 75.05%. 
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These findings underscore the efficacy of leveraging deep learning algorithms for Medicare 

beneficiary classification tasks. By harnessing the capabilities of DLNNWD and RF, significant 

improvements in sensitivity, specificity, and accuracy were observed, indicating their potential to 

enhance healthcare decision-making processes. Additionally, the utilization of 10-fold cross-

validation ensured robust model evaluation and bolstered generalization capabilities. 

This study emphasizes the critical role of advanced machine learning techniques in healthcare 

analytics. Accurate classification of beneficiaries based on attributes such as cancer status and gender 

contributes to improved healthcare outcomes and more effective resource allocation strategies. With 

ongoing research and refinement, deep learning algorithms hold promise for further advancements 

in healthcare analytics and decision support systems, ultimately benefiting patient care and healthcare 

management. 

3.1 Observations on Hyperparameters - 

Regarding Random Forest (RF) hyperparameters, balance class and sample_rate showed no 

discernible impact across both scenarios, with the number of trees remaining constant at 500 while 

the maximum depth varied from 30 to 53 between the scenarios. 

Moving to the Deep Learning Neural Network with Dropout (DLNNWD) hyperparameters, no 

significant effects were observed on balance class, hidden_dropout_ratios, and input_dropout_ratios 

across both scenarios. However, for the first scenario, a preference for hidden parameters with 

consecutively lower numbers of layers was evident. Additionally, equal values for l1 and l2 

regularization parameters were favored. In contrast, the second scenario favored a false balance class, 

with continued preference for hidden parameters with consecutively lower layer numbers. Notably, 

input_dropout_ratios were set to 0, while hidden_dropout_ratios with a value of 0.3 were favored. 

Furthermore, a preference for lower l1 values over l2 regularization parameters was observed in this 

scenario. 

Concerning Deep Learning Neural Network without Dropout (DLNNWOD) hyperparameters, a true 

balance class and an input_dropout_ratios value of 0.1 were preferred in both scenarios. In the first 

scenario, hidden parameters were favored in increasing layer order, whereas in the second scenario, 

they were preferred in decreasing order. Moreover, in the first scenario, equal values for l1 and l2 

were preferred, while in the second scenario, a preference for lower l1 values over l2 was evident. 

Additionally, Maxout activation function was favored in the first scenario, whereas Rectifier was 

preferred in the second scenario. 

Visual representations of all classifiers in terms of receiver operating characteristics are depicted in 

Figures 4 and 5 providing comprehensive insights into performance metrics across various 

hyperparameter configurations. These visualizations serve as valuable aids for evaluating and 

comparing the effectiveness of different classifiers across different scenarios, aiding in informed 

decision-making and model selection. 
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Figure 4: AUC for the gender-based 

DLNNWOD categorization. 

 
Figure 5: Shows the AUC for the 

gender-based RF classification.  

 

 

Table 1:  Presents the Performance Assessment Metrics of Deep Learning Algorithms for the 

categorization of Medicare Beneficiaries based on gender and cancer status. 

 

   

   

Classification of Medicare 

Beneficiaries based on being affected 

by Cancer  

Classification of Medicare Beneficiaries 

based on Gender 

Learning 

Algorithm  
Hyper Parameters  

The Best 

Values of 

Hyper 

Parameters  

Performance  

Evaluation 

Metrics  

10-Fold 

Cross- 

Validation  

The Best Values 

of Hyper 

Parameters  

Performance  

Evaluation 

Metrics  

10-Fold 

Cross- 

Validation  

RF  balance_class   True  Accuracy  98.55  TRUE  Accuracy  75.05  

   max_depth  30  AUC  0.9975  30  AUC  0.837  

   ntrees  550  Sensitivity  98.38  550  Sensitivity  85.97  

   sample_rate   1  Specificity  96.1   1  Specificity  68.71  

         G-Mean  98.72     G-Mean  75.5  

DLNNWOD  balance_class  True   Accuracy  96.69  TRUE  Accuracy  51.38  

   hidden  [10, 50, 

100, 500]  

AUC  0.9931  (100,50,20,10)  AUC  0.577  

   input_dropout_ratios  0  Sensitivity  98.02  0.1  Sensitivity  94.34  

   l1  0.00001  Specificity  93.04  0.0001  Specificity  18.34  

   l2  0.00001  G-Mean  94.04  0.00001  G-Mean  41.37  

DLNNWD  balance_class   True  Accuracy  98.8  FALSE  Accuracy  62.23  

   hidden_dropout_ratios  
[0.3, 0.3, 

0.3, 0.3]  
Sensitivity  99.17  (0.3,0.3,0.3,0.3)  Sensitivity  87.47  

   input_dropout_ratios   0.00  Specificity  97.68  0  Specificity  41.9  

   l1  0.00001  G-Mean  98.42  0.0001  G-Mean  60.53  

   l2  0.00001        0.00001        
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4. CONCLUSION 

The hierarchical learning process is a potent mechanism for distilling intricate features from 

unstructured data across multiple layers. This technique effectively reduces data dimensionality and 

generates higher-level feature representations. Given the extensive nature of datasets, fine-tuning 

hyperparameters becomes crucial to ensure accurate prediction and effective feature identification. 

Grid search emerges as a valuable tool in this regard, enabling the exploration of various 

hyperparameter combinations to optimize model performance. 

In our study, we employed the grid search methodology to classify Medicare beneficiaries based on 

gender and cancer status. By utilizing Random Forest (RF), Deep Learning Neural Network without 

Dropout (DLNNWOD), and Deep Learning Neural Network with Dropout (DLNNWD) as 

classifiers, we aimed to determine the most effective algorithms for beneficiary classification. Our 

findings revealed the proficiency of these models in accurately categorizing Medicare beneficiaries, 

highlighting the utility of advanced machine learning techniques in healthcare analytics. 

This study underscores the pivotal role of precise beneficiary information, including age, gender, and 

medical condition, in guiding governmental healthcare spending towards targeted interventions. By 

directing resources towards specific ailments, age demographics, or gender groups, policymakers can 

mitigate fund misuse and implement preventive measures for associated diseases. This targeted 

approach not only optimizes resource allocation but also enhances healthcare outcomes by addressing 

underlying health disparities and promoting equitable access to care. 

Moreover, the developed model facilitates proactive surveillance by prioritizing claim monitoring to 

identify potential epidemics or localized health events promptly. By enabling timely intervention and 

informed decision-making, the model contributes to public health surveillance efforts and enhances 

healthcare system resilience in the face of emerging threats. 

Despite these advancements, privacy considerations pose challenges to patient mapping within the 

study. Adhering to stringent privacy protocols remains essential to safeguard sensitive patient 

information while ensuring the validity and integrity of research findings. 

Our study demonstrates the efficacy of hierarchical learning techniques and grid search methodology 

in classifying Medicare beneficiaries. By harnessing the power of advanced machine learning 

algorithms, we can optimize resource allocation, enhance disease surveillance, and improve 

healthcare delivery for the benefit of society. 
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